Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.124
Filtrar
1.
MethodsX ; 12: 102667, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38559385

RESUMO

Mycobacterium abscessus is one of the most important nontuberculous mycobacteria that cause lung diseases. In vitro infection models developed to analyze the immune response are frequently based on the addition of mycobacteria to mononuclear cells or neutrophils from peripheral blood. An important requirement of these assays is that most cells phagocytose mycobacteria, only accomplished by using large multiplicities of infection (1 or more bacteria per cell) which may not adequately reflect the inhalation of a few mycobacteria by the host. We propose modifications that try to mimic some of the conditions in which immune cells deal with mycobacteria. For the preparation of the inoculum mycobacteria are grown in solid media followed by preparation to a single cell suspension. Multiplicities of infection (number of bacteria per cell) are below 0.01. Serum-free cellular media is used to allow the growth of M. abscessus. After several days of incubation Bacterial Colonies in Cellular Culture (BCCC) develop, which are enumerated directly under an inverted microscope. These colonies may represent biofilm formation during chronic infections. •Low multiplicity of infection (below 0.01 bacteria per cell) reflects more realistically conditions encountered by immune cells in the lungs.•The surface of mycobacteria prepared for infection assays that are grown in solid media are less affected than that of mycobacteria grown in liquid media with detergents.•Colony formation in the infected cells may reflect the aggregation and biofilm formation in the lungs during chronic infection.

2.
Clin Infect Dis ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563246

RESUMO

BACKGROUND: Improving health-related quality of life (HRQOL) has emerged as a priority in the management of nontuberculous mycobacterial pulmonary disease (NTM-PD). We aimed to evaluate HRQOL and its changes after 6 months' treatment in patients with NTM-PD. METHODS: The NTM-KOREA is a nationwide prospective cohort enrolling patients initiating treatment for NTM-PD in 8 institutions across South Korea. We conducted the Quality of Life-Bronchiectasis (QOL-B) at 6-month intervals and evaluated baseline scores (higher scores indicate better quality of life) and changes after 6 months' treatment. Multivariate logistic regression was performed to identify factors associated with improvement in the QOL-B physical functioning and respiratory symptoms domains. RESULTS: Between February 2022 and August 2023, 411 patients were included in the analysis. Baseline scores (95% confidence interval [CI]) for physical functioning and respiratory symptoms were 66.7 (46.7-86.7) and 81.5 (70.4-92.6), respectively. Among 228 patients who completed the QOL-B after 6 months' treatment, improvements in physical functioning and respiratory symptoms were observed in 61 (26.8%) and 71 (31.1%) patients, respectively. A lower score (adjusted odds ratio; 95% CI) for physical functioning (0.93; 0.91-0.96) and respiratory symptoms (0.92; 0.89-0.95) at treatment initiation was associated with a greater likelihood of physical functioning and respiratory symptom improvement, respectively; achieving culture conversion was not associated with improvement in physical functioning (0.62; 0.28-1.39) or respiratory symptoms (1.30; 0.62-2.74). CONCLUSIONS: After 6 months of antibiotic treatment for NTM-PD, HRQOL improved in almost one-third, especially in patients with severe initial symptoms, regardless of culture conversion. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov identifier: NCT03934034.

3.
Cureus ; 16(4): e57514, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572178

RESUMO

We report a case of an 84-year-old patient with Monoclonal Gammopathy of Undetermined Significance (MGUS) treated with multiple courses of antibiotics and steroids before being diagnosed with Mycobacterium chelonae infection. It is known that MGUS affects both humoral and cellular immunity with impairment of antibody production, function of T-cells, natural killer (NK) cells, and dendritic cells. This case report demonstrates the need to consider patients with MGUS as immunocompromised and draws attention to the correlation between MGUS and Mycobacterium infections. The delay in diagnosis exemplifies the importance of considering atypical pathogens and involving sub-specialists early in the treatment of infections in patients with a history of MGUS.

4.
Eur J Immunol ; : e2350610, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576227

RESUMO

Mycobacterium abscessus is an emerging pathogen that causes chronic pulmonary infection. Treatment is challenging owing in part to our incomplete understanding of M. abscessus virulence mechanisms that enable pathogen persistence, such as the differing pathogenicity of M. abscessus smooth (S) and rough (R) colony morphotype. While R M. abscessus is associated with chronic infection and worse patient outcomes, it is unknown how immune responses to S and R M. abscessus differ in an acute pulmonary infection setting. In this study, immunological outcomes of M. abscessus infection with S and R morphotypes were examined in an immune-competent C3HeB/FeJ murine model. R M. abscessus infection was associated with the rapid production of inflammatory chemokines and recruitment of activated, MHC-II+ Ly6C+ macrophages to lungs and mediastinal LN (mLN). While both S and R M. abscessus increased T helper 1 (Th1) phenotype T cells in the lung, this was markedly delayed in mice infected with S M. abscessus. However, histopathological involvement and bacterial clearance were similar regardless of colony morphotype. These results demonstrate the importance of M. abscessus colony morphotype in shaping the development of pulmonary immune responses to M. abscessus, which further informs our understanding of M. abscessus host-pathogen interactions.

5.
Cureus ; 16(3): e55889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38595874

RESUMO

Mycobacterium porcinum is a nontuberculous mycobacteria (NTM) recently identified to cause human infection. Correct speciation of NTMs can be difficult and result in misdiagnosis and delayed treatment. Because of the paucity of the literature, there is a lack of awareness of the possibility of serious infections caused by M. porcinum. Although severe infections tend to occur in individuals with certain risk factors, the primary being an immunocompromised state, our case illustrates that it can also be possible in non-severely immunocompromised individuals. A 65-year-old male with a medical history of diabetes mellitus (DM), end-stage renal disease (ESRD) on hemodialysis (HD), congestive heart failure (CHF), and chronic obstructive pulmonary disease (COPD) was admitted to the emergency room due to a laceration on his right lower leg following a fall. He reported shortness of breath but denied other respiratory symptoms. On examination, he showed signs of infection and increased oxygen requirement compared to baseline. Blood culture was positive for acid-fast bacilli (AFB), initially reported as M. avium complex (MAC) and later confirmed as M. porcinum through gene sequencing and morphology analysis. Interval blood cultures taken a week later confirmed true M. porcinum bacteremia. Treatment initially involved intravenous antibiotics- imipenem and ciprofloxacin before transitioning to oral linezolid and ciprofloxacin based on sensitivities. Following 10 days of antibiotic therapy, subsequent blood cultures returned negative, and treatment with oral antibiotics was advised, with continued outpatient follow-up with infectious disease in two weeks. M. porcinum, typically considered a contaminant in healthy individuals, was identified as the causative agent of a disseminated infection in a non-severely immunocompromised patient. This case underscores the importance of accurately identifying the specific mycobacterial species, confirming true infection, and conducting antibiotic susceptibility testing due to the distinct antibiotic susceptibility profile of M. porcinum compared to other NTM like MAC.

6.
Heliyon ; 10(7): e28630, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596092

RESUMO

Nontuberculous mycobacteria associated intracranial infection is a rare disease that mainly occurs in HIV-infected patients. The disease has a poor prognosis. The authors report a case of non-tuberculous mycobacterial meningoencephalitis in a non-AIDS patient, but long history of poorly controlled type 2 diabetes mellitus. A 55-year-old, right-handed, male patient presented with an 8-day history of fever, episodes of severe headache with signs of meningeal irritation. MRI showed hyperintensities/contrast enhancement in the visual pathways, basal ganglia sellar region and leptomeninges. No etiological diagnosis was reached until metagenomic next-generation sequencing (mNGS) was used, showing the presence of Mycobacterium avium. The patient was cured with aggressive antimycobacterial therapy. The authors discuss the clinical manifestations and drug therapy of nontuberculous mycobacteria-related intracranial infections by reviewing relevant literature. As meningoencephalitis by Mycobacterium avium has a high mortality an early diagnosis and appropriate therapeutic interventions are warranted. For this reason, the use of mNGS can be helpful to avoid therapeutic delay.

7.
Rev Esp Quimioter ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602224

RESUMO

OBJECTIVE: Mycobacterium avium complex (MAC) and Mycobacterium abscessus are a group of nontuberculous mycobacteria (NTM) that have been described as human pathogens. Their ability to develop biofilms in tissues and medical devices is one of the most important pathogenicity factors, with important implications in diagnosis and treatment. Macrolides are usually considered one of the bases of this treatment. METHODS: Here we have studied the biofilm prevention concentration (BPC) of 16 strains (n=16) with clarithromycin to avoid the biofilm development by these NTM. RESULTS: In this study, all M. abscessus strains have similar BPC, while MAC strains showed different values. For MAC the concentrations ranged between 1-16 mg/L, while for M. abscessus the concentration was 32 mg/L for all strains except one that was 64 mg/L. CONCLUSIONS: These results open the possibility of using macrolides for the prevention of biofilm development in patients with a risk of developing NTM disease.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38590075

RESUMO

Rationale: Despite the global increase in nontuberculous mycobacterial pulmonary disease (NTM-PD), there are geographical variations in clinical characteristics. We investigated the clinical characteristics of patients with NTM-PD in South Korea. Methods: We systematically reviewed articles about patients with NTM-PD in South Korea until February 2022. Individual participant data, regardless of treatment, were collected using a standard case report form. Results: The data of 6,489 patients from 11 hospitals between 2002 and 2019 were analyzed. The mean age was 61.5 ± 11.7 years, and 57.7% were women. Mycobacterium avium (41.4%) and Mycobacterium intracellulare (38.4%) comprised most of the causative species, followed by Mycobacterium abscessus subspecies abscessus (8.6%) and Mycobacterium abscessus subspecies massiliense (7.8%). Bronchiectasis (59.4%) was the most common pulmonary comorbidity. Reported cases of NTM-PD increased over the years, but the proportions of causative species and radiologic forms remained similar. Distinct clinical characteristics were observed according to age and sex. Men were older at the time of diagnosis (median 63.8 vs. 59.9 years, P<0.001) and had more cavitary lesions than women (38.8% vs. 21.0%, P<0.001). The older group (≥65 years) had a higher proportion of patients with body mass index <18.5 kg/m2 (27.4% vs. 18.6%, P<0.001) and cavitary lesions (29.9% vs. 27.6%, P=0.009) than the younger group. Conclusion: We performed a meta-analysis of the clinical characteristics of patients with NTM-PD in South Korea. We found age- and sex-related differences in disease-specific severity. Further investigation would enhance our comprehension of the disease's nature and inherited and acquired host factors.

9.
mSphere ; : e0012224, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591887

RESUMO

Antibiotic resistance in Mycobacterium tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that in Mycobacterium smegmatis, as in other bacterial species, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2, DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA. IMPORTANCE: Unlike many other pathogens, Mycobacterium tuberculosis has limited ability for horizontal gene transfer, a major mechanism for developing antibiotic resistance. Thus, the mechanisms that facilitate chromosomal mutagenesis are of particular importance in mycobacteria. Here, we show that Lsr2, a nucleoid-associated protein, has a novel role in DNA replication and mutagenesis in the model mycobacterium Mycobacterium smegmatis. We find that Lsr2 promotes the fast exchange rate of the replicative DNA polymerase, DnaE1, at the replication fork and is important for the effective loading of the DnaE2-ImuA'-ImuB translesion complex. Without lsr2, M. smegmatis replicates its chromosome more faithfully and acquires resistance to rifampin at a lower rate, but at the cost of impaired survival to DNA damaging agents. Together, our work establishes Lsr2 as a potential factor in the emergence of mycobacterial antibiotic resistance.

10.
BMC Pediatr ; 24(1): 223, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561744

RESUMO

BACKGROUND: Miliary tuberculosis (TB) is a lethal hematogenous spread form of mycobacterium tuberculosis with approximately 15-20% mortality rate in children. The present report highlights the clinical manifestations of an unusual presentation of miliary tuberculosis in a 12-year-old girl. CASE PRESENTATION: In this case, extensive lung involvement was presented despite the absence of respiratory symptoms. Also, some central hypo-intense with hyper-intense rim nodules were detected in the brain's pons, right cerebral peduncles and lentiform nucleus. CONCLUSION: The results of this study showed that severe miliary TB may occur even in a person who received the Bacille Calmette-Guérin (BCG) vaccine.


Assuntos
Mycobacterium tuberculosis , Tuberculose Miliar , Criança , Feminino , Humanos , Tuberculose Miliar/diagnóstico , Tuberculose Miliar/tratamento farmacológico , Vacina BCG , Ponte
11.
J Infect ; 88(5): 106149, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574774

RESUMO

BACKGROUND: Distinguishing between nontuberculous mycobacterial (NTM) lung infections and pulmonary tuberculosis becomes challenging due to their similar clinical manifestations and radiological images. Consequently, instances of delayed diagnosis or misdiagnosis are highly frequent. A feasible and reliable indicator of the existence of NTM in the early stages of the disease would help to solve this dilemma. METHODS: In this study, we evaluated the potential of smear-positive and Xpert assay (Cepheid, USA) negative outcomes as an early indicator of possible NTM infection in a high TB-burden setting retrospectively and prospectively. RESULTS: During the study period, 12·77% (138/1081) of the smear-positive cases yielded negative outcomes with the simultaneous Xpert assay. From the 110 patients who yielded smear-positive/Xpert-negative outcomes and cultivated strain as well, 105 (95·45%) were proved to have NTM isolated. By incorporating an additional criterion of a negative result from the Interferon-gamma release assay, the accuracy of the screening method reached 100%. Regarding the NTM presence prediction value, smear-positive/Xpert-negative has a sensitivity of 24·86% (45/181) in all NTM isolated cases but 93·75-96·55% accuracy in retrospective study or 93·75% accuracy in prospective study in smear-positive NTM isolated cases. In addition, the specificity was ∼99·47% (943/948) in smear-positive tuberculosis cases. CONCLUSION: The clue of the presence of NTM could be obtained on the first day of the hospital visit due to the point of care (POC) feature of smear testing and Xpert assay. About one-fourth of the NTM-isolated patients would benefit from this rapid, convenient, and reliable screening strategy in the given circumstance. Smear-positive/Xpert-negative outcome is an early, trustable indicator that is indicative of NTM isolation.

12.
BMC Infect Dis ; 24(1): 395, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609847

RESUMO

BACKGROUND: Non-tuberculous mycobacteria (NTM) are environmental organisms that are increasingly contributing to human infections. Mycobacterium immunogenum, a variant of NTM discovered in 2001, is a rapidly growing mycobacterium that exhibits multidrug resistance. Reports of infections caused by this organism, particularly tenosynovitis in the musculoskeletal system, are limited. CASE PRESENTATION: A 71-year-old female with vesicular pemphigus, undergoing immunosuppressive therapy, presented with a progressively enlarging tumour on the dorsum of her right hand, along with erythematous papules that extended across her right forearm. The specimens of skin tissues and blood cultures revealed the presence of M. immunogenum. Magnetic resonance imaging evaluation led to the diagnosis of pyogenic extensor tenosynovitis. A multidrug regimen, comprising amikacin and clarithromycin, was initiated, followed by synovectomy. The patient underwent a course of 180 days of antimicrobial therapy and demonstrated no signs of disease recurrence one year after treatment completion. CONCLUSION: Early diagnosis and surgical intervention are crucial to prevent the adverse prognostic implications of pyogenic extensor tenosynovitis caused by M. immunogenum. Effective management requires precise microbial identification and susceptibility testing, necessitating collaborative engagement with microbiological laboratories.


Assuntos
Mycobacteriaceae , Tenossinovite , Humanos , Feminino , Idoso , Tenossinovite/diagnóstico , Tenossinovite/tratamento farmacológico , Tenossinovite/cirurgia , Diagnóstico Precoce , Mãos , Micobactérias não Tuberculosas
13.
J Clin Tuberc Other Mycobact Dis ; 35: 100435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38601919

RESUMO

Antimicrobial resistance alongside other challenges in tuberculosis (TB) therapeutics have stirred renewed interest in host-directed interventions, including the role of antibodies as adjunct therapeutic agents. This study assessed the binding efficacy of two novel IgG1 opsonic monoclonal antibodies (MABs; GG9 & JG7) at 5, 10, and 25 µg/mL to live cultures of Mycobacterium tuberculosis, M. avium, M. bovis, M. fortuitum, M. intracellulare, and M. smegmatis American Type Culture Collection laboratory reference strains, as well as clinical susceptible, multi-drug resistant, and extensively drug resistant M. tuberculosis strains using indirect enzyme-linked immunosorbent assays. These three MAB concentrations were selected from a range of concentrations used in previous optimization (binding and functional) assays. Both MABs bound to all mycobacterial species and sub-types tested, albeit to varying degrees. Statistically significant differences in MAB binding activity were observed when comparing the highest and lowest MAB concentrations (p < 0.05) for both MABs GG9 and JG7, irrespective of the M. tuberculosis resistance profile. Binding affinity increased with an increase in MAB concentration, and optimal binding was observed at 25 µg/mL. JG7 showed better binding activity than GG9. Both MABs also bound to five MOTT species, albeit at varied levels. This non-selective binding to different mycobacterial species suggests a potential role for GG9 and JG7 as adjunctive agents in anti-TB chemotherapy with the aim to enhance bacterial killing.

14.
Comput Struct Biotechnol J ; 23: 1477-1488, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38623562

RESUMO

Mycobacteria are causative agents of tuberculosis (TB), which is a global health concern. Drug-resistant TB strains are rapidly emerging, thereby necessitating the urgent development of new drugs. Two-component signal transduction systems (TCSs) are signaling pathways involved in the regulation of various bacterial behaviors and responses to environmental stimuli. Applying specific inhibitors of TCSs can disrupt bacterial signaling, growth, and virulence, and can help combat drug-resistant TB. We conducted a comprehensive pharmacophore-based inhibitor screening and biochemical and biophysical examinations to identify, characterize, and validate potential inhibitors targeting the response regulators PhoP and MtrA of mycobacteria. The constructed pharmacophore model Phar-PR-n4 identified effective inhibitors of formation of the PhoP-DNA complex: ST132 (IC50 = 29 ± 1.6 µM) and ST166 (IC50 = 18 ± 1.3 µM). ST166 (KD = 18.4 ± 4.3 µM) and ST132 (KD = 14.5 ± 0.1 µM) strongly targeted PhoP in a slow-on, slow-off manner. The inhibitory potency and binding affinity of ST166 and ST132 for MtrAC were comparable to those of PhoP. Structural analyses and molecular dynamics simulations revealed that ST166 and ST132 mainly interact with the α8-helix and C-terminal ß-hairpin of PhoP, with functionally essential residue hotspots for structure-based inhibitor optimization. Moreover, ST166 has in vitro antibacterial activity against Macrobacterium marinum. Thus, ST166, with its characteristic 1,2,5,6-tetrathiocane and terminal sulphonic groups, has excellent potential as a candidate for the development of novel antimicrobial agents to combat pathogenic mycobacteria.

15.
Proc Natl Acad Sci U S A ; 121(17): e2403206121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630725

RESUMO

Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.


Assuntos
Mycobacterium abscessus , Humanos , Proteínas de Bactérias/genética , Lipopolissacarídeos/química , Mutação
16.
FEBS Lett ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639734

RESUMO

MTS1338, a distinctive small RNA in pathogenic mycobacteria, plays a crucial role in host-pathogen interactions during infection. Mycobacterial cells encounter heterogeneous stresses in macrophages, which highly upregulate MTS1338. A dormancy regulatory factor DosR regulates the intracellular abundance of MTS1338. Herein, we investigated the interplay of DosR and a low pH-inducible gene regulator PhoP binding to the MTS1338 promoter. We identified that DosR strongly binds to two regions upstream of the MTS1338 gene. The proximal region possesses a threefold higher affinity than the distal site, but the presence of both regions increased the affinity for DosR by > 10-fold. PhoP did not bind to the MTS1338 gene but binds to the DosR-bound MTS1338 gene, suggesting a concerted mechanism for MTS1338 expression.

17.
Diagn Microbiol Infect Dis ; 109(3): 116296, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640607

RESUMO

Pulmonary infection due to Mycobacterium abscessus complex (MABC) usually occurs in children with underlying risk factors including cystic fibrosis (CF), chronic lung disease, and immunocompromised status, but rarely in immunocompetent children without underlying lung disease, especially in infants. We present a case of MABC pulmonary disease (MABC-PD) in an otherwise healthy 53-day-old male infant with one week of cough and respiratory distress. Computed tomography showed multiple masses across both lungs. Isolated mycobacteria from his bronchoalveolar lavage fluid were identified as MABC. We describe our complete evaluation, including immunodeficiency evaluation incorporating whole exome sequencing and our therapeutic process given complicated susceptibility pattern of the M. abscessus isolate, and review literature for MABC-PD in immunocompetent children. The infant was successfully treated through prolonged treatment with parenteral Amikacin, Cefoxitin, Linezolid, and Clarithromycin, combined with inhaled Amikacin.

18.
BMC Genomics ; 25(1): 387, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643090

RESUMO

BACKGROUND: Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing (WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are transitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics tools are needed to rapidly identify M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), detect drug resistance, and further guide treatment options. RESULTS: We developed GenoMycAnalyzer, a web-based software that integrates functions for identifying MTBC and NTM species, lineage and spoligotype prediction, variant calling, annotation, drug-resistance determination, and data visualization. The accuracy of GenoMycAnalyzer for genotypic drug susceptibility testing (gDST) was evaluated using 5,473 MTBC isolates that underwent phenotypic DST (pDST). The GenoMycAnalyzer database was built to predict the gDST for 15 antituberculosis drugs using the World Health Organization mutational catalogue. Compared to pDST, the sensitivity of drug susceptibilities by the GenoMycAnalyzer for first-line drugs ranged from 95.9% for rifampicin (95% CI 94.8-96.7%) to 79.6% for pyrazinamide (95% CI 76.9-82.2%), whereas those for second-line drugs ranged from 98.2% for levofloxacin (95% CI 90.1-100.0%) to 74.9% for capreomycin (95% CI 69.3-80.0%). Notably, the integration of large deletions of the four resistance-conferring genes increased gDST sensitivity. The specificity of drug susceptibilities by the GenoMycAnalyzer ranged from 98.7% for amikacin (95% CI 97.8-99.3%) to 79.5% for ethionamide (95% CI 76.4-82.3%). The incorporated Kraken2 software identified 1,284 mycobacterial species with an accuracy of 98.8%. GenoMycAnalyzer also perfectly predicted lineages for 1,935 MTBC and spoligotypes for 54 MTBC. CONCLUSIONS: GenoMycAnalyzer offers both web-based and graphical user interfaces, which can help biologists with limited access to high-performance computing systems or limited bioinformatics skills. By streamlining the interpretation of WGS data, the GenoMycAnalyzer has the potential to significantly impact TB management and contribute to global efforts to combat this infectious disease. GenoMycAnalyzer is available at http://www.mycochase.org .


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Micobactérias não Tuberculosas , Resistência a Medicamentos , Internet
19.
Cureus ; 16(3): e56622, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646349

RESUMO

The increasing prevalence of Mycobacterium avium complex (MAC) pulmonary disease poses a significant therapeutic challenge, particularly due to the limited efficacy and systemic toxicity associated with conventional guideline-based therapy. Amikacin liposome inhalation suspension (ALIS) has been developed, yet its real-world application remains underreported. This retrospective analysis, conducted from March 2021 to February 2024, examined ALIS's clinical use in patients aged 20 years or older with refractory MAC pulmonary disease at our institution. The primary objective of this study is to describe the patient characteristics and clinical trajectories associated with the initiation of ALIS therapy in real-world settings for individuals diagnosed with MAC pulmonary disease. Of 11 patients initiated on ALIS, one was excluded due to financial constraints impacting continuation. The analysis proceeded with the remaining 10 subjects. The mean age of participants was 70.2 years, with a predominance of female patients (n = 7, 70%) and a higher incidence of M. avium infections (n = 6, 60%). Forty percent of the cohort (n = 4) had a history of ethambutol-induced optic neuritis leading to the cessation of the drug. The average interval from the initiation of guideline-based therapy to the start of ALIS was 8.5 ± 6.9 years (mean ± standard deviation). The majority (80%) presented with positive Gaffky scores at ALIS initiation, and a significant proportion exhibited resistance to clarithromycin and ethambutol. Comorbid conditions, including diabetes and previous cancer, were noted. The study also observed elevated anti-MAC antibody levels. Treatment duration varied, with fatigue leading to discontinuation in two cases. Treatment-emergent adverse events were documented in individual patients, each presenting with grade 1 severity: hemoptysis (n = 1, 10%), elevated creatinine levels (n = 1, 10%), and dysphonia (n = 2, 20%) were observed, respectively. Correlation analysis revealed a significant inverse relationship between body mass index (BMI) and ALIS discontinuation due to fatigue, and a positive correlation between Gaffky scores and C-reactive protein (CRP) levels. These results underscore the potential benefits and limitations of ALIS, suggesting that timely intervention and comprehensive healthcare support are crucial for optimal outcomes in the treatment of advanced MAC pulmonary disease.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38607578

RESUMO

PURPOSE: Rapid, reliable identification of mycobacteria from positive cultures is essential for patient management, particularly for the differential diagnosis of Mycobacterium tuberculosis complex (MTBC) and nontuberculous mycobacteria (NTM) species. The aim of the present study was to evaluate a new "In-Vitro-Diagnostic"-certified PCR kit, FluoroType®-Mycobacteria VER 1.0 (Hain Lifescience GmbH) for NTM and MTBC identification from cultures. METHODS: Mycobacteria identification isolated from positive cultures during routine practice at the Lyon university hospital mycobacteria laboratory obtained by hsp65 amplification/sequencing were compared retrospectively and prospectively to those obtained by and the FluoroType®-Mycobacteria VER 1.0 kit. RESULTS: The overall agreement between hsp65 amplification/sequencing and the FluoroType®-Mycobacteria VER 1.0 kit was 88.4% (84/95); 91.2% (52/57) for the retrospective period and 84.2% (32/38) for the prospective period. There were 9 (9.5%) minor discrepancies (species in the FluoroType®-Mycobacteria VER 1.0 database and identified at genus level): 4 during the retrospective period, 5 during the prospective period; and 2 (2.1%) major discrepancies (species in the FluoroType®-Mycobacteria VER 1.0 database and identified incorrectly to species level): 1 during the retrospective period (M. kumamotonense identified as M. abscessus subsp massiliense by the kit) and 1 during the prospective period (M. chimaera identified as M. smegmatis by the kit). Including concordant results at genus level and minor discrepancies, 17.9% (17/95) of strains were identified as Mycobacterium sp. by the FluoroType®-Mycobacteria-VER 1.0 kit. CONCLUSION: The good performance of the FluoroType®-Mycobacteria-VER 1.0 kit with few major discrepancies could enable its use for first-line identification of positive mycobacteria cultures. However, an alternative identification method at least for reference laboratories is needed owing to the non-negligible proportion of NTM strains were identified at genus level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...